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We investigate quantum tunneling in a translation invariant chain of particles. The particles interact har-
monically with their nearest neighbors except for one bond, which is anharmonic. It is described by a sym-
metric double-well potential. In the first step, we show how the anharmonic coordinate can be separated from
the normal modes. This yields a Lagrangian which has been used to study quantum dissipation. Elimination of
the normal modes leads to a nonlocal action of Caldeira-Leggett type. If the anharmonic bond defect is in the
bulk, one arrives at Ohmic damping, i.e., there is a transition of a delocalized bond state to a localized one if
the elastic constant exceeds a critical value Ccrit. The latter depends on the masses of the bond defect.
Super-Ohmic damping occurs if the bond defect is in the site M at a finite distance from one of the chain ends.
If the observation time T is smaller than a characteristic time �M �M, depending on the location M of the
defect, the behavior is similar to the bulk situation. However, for T��M tunneling is never suppressed.
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I. INTRODUCTION

The influence of environmental degrees of freedom
�DOF� on quantum phenomena, such as, e.g., tunneling, has
been of great interest during the last decades.1–3 Significant
progress came from the investigation of a more or less phe-
nomenological model where a particle in a one-dimensional
�1D� potential V�q� or a free particle is coupled to a bath of
harmonic oscillators with the spectral density J���. The
quantum dissipation generated by the bath depends qualita-
tively on the low-frequency behavior of J���.1–3 A particular
interesting case is Ohmic damping, when J����� for low
enough frequencies. In that case and for a symmetric double-
well potential, the particle at zero temperature undergoes a
transition from a delocalized state to a localized one if the
coupling constant between the particle and bath exceeds a
critical value.4 An interesting observation has been made by
Caldeira and Leggett.5 The exponent of the exponential fac-
tor for the tunneling probability is multiplied by �, the phe-
nomenological friction coefficient of the corresponding clas-
sical dynamics. This relationship between classical and
quantum dissipations has been deepened and generalized by
Leggett6 for an arbitrary linear coupling between the particle
and bath coordinates.

Let q̃��� be the Fourier transform of the classical particle
trajectory q�t� and

K̃0���q̃��� +
�V˜

�q
��� = 0 �1�

the transformed classical equation of motion, where K̃0���
contains the dissipative influence of the bath. Then the re-
duced Euclidean particle propagator GE�q� ,T �q ,0� �where
the harmonic DOF have been eliminated� can be represented
by a path integral in the imaginary time t=−i� �Ref. 7�,

GE�q�,T�q,0� = �q�0�=q

q�T�=q�

D�q����e−�1/��S�q����. �2�

The action,

S�q���� = S0�q���� + Snonlocal�q���� , �3a�

contains the local,

S0�q���� = �
0

T

d��Mp

2
q̇���2 + V�q���� +

�

2
q���2	 , �3b�

and the nonlocal parts,

Snonlocal�q���� = − �
0

T

d��
0

�

d��K�� − ���q���q����

= −
1

2�

1

2
� d�K̃����q̃����2. �3c�

The second equality holds for T→	. K̃��� is the Fourier
transform of the integral kernel K��� and it is related to

K̃0��� by K̃���= 1
2 K̃0�−i����. If the Euclidean Lagrangian of

the particle-bath system is

L = L0 + L1, L1 = Lbath + Lint, �4a�

with

L0�q, q̇� =
1

2
Mpq̇2 + V�q� , �4b�

and

L1�q,x� ; q̇, ẋ�� =
1

2 


=1

N

m
�ẋ

2 + �


2�x
 −
c


m
�

2 q
2� , �4c�

then1–3

� =
2

�
�

0

	

d�
J���

�
, �5a�

and
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K��� =
1

�
�

0

	

d�J���
cosh���T

2
− ���
�

sinh��
T

2

 , �5b�

with the spectral density

J��� =
�

2 


=1

N
c


2

m
�


��� − �
� . �5c�

For a finite T the kernel K��� and the paths q��� can be
periodically continued. Then the Fourier series for K��� is
given by the Fourier coefficients3

Kn =
1

T





c

2

m


1

�n
2 + �


2 , �6�

with �n= �2� /T�n, n=0, 
1, 
2, . . .. Here Mp and �m
� are
the masses of the particle and harmonic oscillators, respec-
tively. ��
� are the oscillator frequencies and �c
� are the
coupling constants between q and the coordinates of the os-
cillators �x
�. Note that �x
� are not necessarily positions but
can represent normal-mode coordinates of vibrations, etc.

In the following we will restrict ourselves to a system of
N particles whose potential energy V�x�1 , . . . ,x�N� includes
harmonic and anharmonic interactions. Without an external
field, V must be translationally invariant. However, since the
coordinates of Lagrangian �4� are not specified, it is not nec-
essarily invariant under translations. This has motivated
Chudnovsky8 to apply the Caldeira-Leggett approach to a
system of two particles �i=1,2� with positions xi and masses
Mi, coupled to oscillators with coordinates x
, frequencies
�
, and masses m
 ,
=1, . . . ,N. The corresponding Euclid-
ean Lagrangian is of the form

L =
M1

2
ẋ1

2 +
M2

2
ẋ2

2 + V�x1 − x2� +
1

2 


=1

N

m
�ẋ

2 + �


2�x
 − x2�2� ,

�7�

with V�x1−x2� being the interaction energy between both
particles. The coupling of particle i=1 to the oscillators is
assumed to be zero. It is obvious that L is translationally
invariant under xi→xi+a, x
→x
+a provided that �x
� are
real-space coordinates. Surprisingly the elimination of har-
monic DOF does not lead at zero temperature to a nonlocal
action of Caldeira-Leggett type �cf. Eqs. �3c�, �5b�, and �6��.
The Fourier coefficients of Chudnovsky’s kernel have the
form

Kn
c =

2

T

M1
2�n

2

M1 + M2 + 




m
�

2

�n
2 + �


2

, �8�

which differs qualitatively from the Caldeira-Leggett type
result �6�. However, for M1→	 one gets

Kn
c →

2

T
�M1 − M2��n

2 −
1

T





2m
�

2 �n

2

�n
2 + �


2 , �9�

where the last term, up to the additional factor −�n
2, corre-

sponds to the second-order time derivative of the kernel,
identical to Kn from Eq. �6�, if one chooses c


c =�2m
�
.8

Then the question arises: Does a translationally invariant
model in general lead to a nonlocal action, which is not of
Caldeira-Leggett type? This is one of the main points we
want to investigate among others in our paper. It will be done
for a microscopic �within a Born-Oppenheimer approxima-
tion� explicitly translationally invariant lattice model with a
defect which cannot diffuse. We will show how the normal-
mode coordinates for the harmonic DOF can exactly be sepa-
rated from the anharmonic ones. This leads to a Lagrangian
of the form of Eq. �4� with coupling constants c
, frequen-
cies �
, and a spectral density determined by the micro-
scopic model parameters. Such a microscopic justification of
Lagrangian �4� has been presented for quantum diffusion.9

There a particle diffusing through an elastic lattice is consid-
ered. If, however, that particle cannot diffuse and is an inte-
gral part of the lattice, e.g., an impurity which can tunnel
only between two positions, one has to separate the center of
mass �COM� and relative coordinates of all particles. For
such a situation, Sethna10 has estimated the coupling con-
stants c
 by comparing the strain field of an elastic monopole
of an impurity with the displacement for a longitudinal
mode. But, as far as we know, there is no microscopic deri-
vation available for the quantities c
, �
, and J��� for a
nondiffusing impurity in a lattice. Besides such a micro-
scopic derivation, we will show that the quantum behavior of
the defect is sensitive to its location.

The outline of our paper is as follows: Sec. II presents our
model and outlines the main steps leading to Lagrangian �4�.
The implications for the quantum behavior will be discussed
in Sec. III with a special emphasis on the role of defect
location. Summary and conclusions are contained in Sec. IV.
Appendixes A–C contain details on the separation of the
harmonic and anharmonic DOF.

II. MODEL

We consider an open chain of N particles with masses
mn , n=1, . . . ,N and harmonic nearest-neighbor interactions,
and one anharmonic bond representing a defect. This model
could describe a linear macromolecule with an impurity. The
classical Hamiltonian reads

H = 

n=1

N
1

2mn
pn

2 + V�x1, . . . ,xN� , �10a�

with the potential energy

V�x1, . . . ,xN� =
C

2 

n=1

��M�

N−1

�xn+1 − xn − a�2 + V0�xM+1 − xM� .

�10b�

in which xn is the position of nth particle, C is the elastic
constant of the harmonic nearest-neighbor interaction, a is
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the equilibrium length of the harmonic bonds, and V0�xM+1
−xM� is the energy of the anharmonic bond defect located
between sites M and M +1. The potential energy V is explic-
itly translationally invariant. Several ways exist to separate
the harmonic and anharmonic DOF, which finally lead to the
Lagrangian �4� �see Appendixes B and C�. One �see Appen-
dix B�, which is also applicable in higher dimensions, is to
introduce the COM,

Xd =
1

mM + mM+1
�mMxM + mM+1xM+1� , �11a�

and relative coordinates of the bond defect,

qM = xM+1 − xM . �11b�

Then, x1 , . . . ,xM−1 ,Xd ,xM+1 , . . . ,xN are harmonic coordi-
nates. Their kinetic and potential energies can be diagonal-
ized by introducing normal coordinates. qM is linearly
coupled to these coordinates. As a result, one obtains the
Lagrangian �4�. Here we will choose a different approach
applicable to 1D systems, which, however, leads to the same
Lagrangian. Let

Xc =
1

Mc


n=1

N

mnxn, Mc = 

n=1

N

mn �12a�

be the COM of all the particles and

qi = xi+1 − xi − ai, i = 1, . . . ,N − 1,

aM = 0, and ai = a otherwise, �12b�

be the relative coordinates, respectively. Using notation q0
=Xc, Eqs. �12a� and �12b� has the form

qi + ai = 

n=1

N

Ainxn, i = 0,1, . . . ,N − 1, �13a�

with

Ain =
mn

Mc
�0,i + ��i,n+1 − �i,n��1 − �0,i� .

Let �i be the canonical conjugate momenta of qi. It is easy to
prove that Eq. �13a� implies

pn = 

i=0

N−1

Ain�i, n = 1, . . . ,N . �13b�

Substituting pn into Eq. �13a� yields

H =
1

2Mc
�0

2 +
1

2 

i=1

N−1 � 1

mi
+

1

mi+1

�i

2 − 

i=1

N−2
1

mi+1
�i�i+1

+
C

2 

i=1

�i�M�

N−1

qi
2 + V0�qM� . �14�

Here the first term is the kinetic energy of COM, which will
be dropped from now on. Note that the use of relative coor-
dinates introduces a coupling between the momenta. In the
next step, we perform the canonical transformation

�i = p̃i, i = 1, . . . ,N − 1;i � M ,

�M = p̃M +
1

mM + mM+1
�mM+1p̃M−1 + mMp̃M+1� , �15a�

qi = q̃i, i = 1, . . . ,N − 1;i � M 
 1,

qM−1 = q̃M−1 −
mM+1

mM + mM+1
q̃M ,

qM+1 = q̃M+1 −
mM

mM + mM+1
q̃M . �15b�

This leads to

H = Hd + Hharm + Hint, �16a�

where

Hd =
mM + mM+1

2mMmM+1
p̃M

2 + V0�q̃M� +
C

2

mM
2 + mM+1

2

�mM + mM+1�2 q̃M
2

�16b�

is the defect Hamiltonian,

Hharm =
1

2 

i,j=1

��M�

N−1

Tijp̃ip̃j +
C

2 

i=1

��M�

N−1

q̃i
2 �16c�

is the harmonic part of the Hamiltonian, and

Hint = − C
mM+1q̃M−1 + mMq̃M+1

mM + mM+1
q̃M �16d�

is the coupling between the two.
The matrix T= �Tij� in Eq. �16c� depends on the masses mi

�see Appendix A�. Let e�
�= �e1
�
� , . . . ,eM−1

�
� ,eM+1
�
� , . . . ,eN−1

�
� �t

and �
 be the normalized eigenvectors and eigenvalues of T,
respectively, and

S = �e�1�, . . . ,e�N−2��

be the orthogonal matrix, which diagonalizes T, i.e.,

S−1TS = �, �
� = �
�
�. �17�

Then we can introduce the normal coordinates

x
 = 

i=1

��M�

N−1

S
iq̃i, p
 = 

i=1

��M�

N−1

S
ip̃i �18�

for 
=1,2 , . . . ,N−2 such that Hharm becomes diagonal,

Hharm =
1

2 


=1

N−2

��
p

2 + Cx


2� . �19a�

The interaction term takes the form

Hint = − 


=1

N−2

c
x
qM . �19b�

The M dependent coupling constants are given by
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c
 = C
1

mM + mM+1
�mM+1eM−1

�
� + mMeM+1
�
� � . �20�

The final step is the Legendre transformation of H, which
leads to the Euclidean Lagrangian

L = Ld + L1, L1 = Lharm + Lint, �21a�

where

Ld =
1

2
m̃q̇M

2 + V0�qM� , �21b�

and

L1 =
1

2 


=1

N−2

m
�ẋ

2 + �


2�x
 −
c


m
�

2 qM
2� . �21c�

Here we have used the equality q̃M =qM �cf. Eq. �15b�� and




=1

N−2
c


2

m
�

2 = C

mM
2 + mM+1

2

�mM + mM+1�2 , �22�

which follows from the completeness of the set e�
� of eigen-
vectors and 1 / �m
�


2�=1 /C �see below�. Equation �22� al-

lows us to include the counterterm C
2

mM
2 +mM+1

2

�mM+mM+1�2 qM
2 in Eq.

�16b� into L1. This counterterm, the role of which has been
discussed by Caldeira and Leggett,11 results from the canoni-
cal transformation �Eq. �15��. This transformation eliminates
the coupling between the momenta of the harmonic DOF and
that of the defect, and generates coupling between the
normal-mode coordinates �x
� and the corresponding defect
variable qM �cf. Eq. �16d��. Due to the disappearance of the
counterterm, there is no frequency renormalization for the
bond defect.3 The Lagrangian �21� is identical to that of Eq.
�4�. The masses m
 and frequencies �
 follow from

m
 =
1

�


, �
 = �C�
�1/2, �23a�

and the reduced defect mass m̃ is given by

m̃ =
mMmM+1

mM + mM+1
. �23b�

Note that these results are exact for one-dimensional sys-
tems. It can be shown that for an arbitrary impurity in a two-
or three-dimensional system the Lagrangian �21� can be de-
rived within a kind of harmonic approximation.12

III. QUANTUM TUNNELING

In this section we will investigate the zero-temperature
quantum behavior of the anharmonic bond defect embedded
in the harmonic chain as shown in Fig. 1.

We will assume that V0�qM� is a symmetric double-well
potential with degenerate minima at qM

− =as�0 and qM
+ =a�

�as. Then the classical ground state of V�x1 , . . . ,xN� �cf. Eq.
�10b�� is twofold degenerate �see Fig. 1�. Therefore the low-
lying eigenstates form doublets. Neglecting the excited dou-
blets at zero temperature is justified if the bare tunneling

splitting of the ground-state doublet is much less than the
frequency of the upper phonon band edge �0 �see Eq.
�25a��.1 If the total number N of particles in the chain is
macroscopically large and the particle number M is in the
bulk of the chain, i.e., M =O�N�, one might have expected a
suppression of tunneling since the change from, e.g., qM

−

=as to qM
+ =a�, would require a translation of the macro-

scopic mass of the left and right harmonic parts of the chain.
We will see that this naive expectation is not always correct.

On the other hand, if the defect is close to one of the free
boundaries, i.e., either M =O�1� or �N−M�=O�1�, only a
finite mass �M has to be translated. Consequently tunneling
cannot be suppressed. This qualitative M dependence should
follow from that of the kernel K���, which itself results from
the strong M sensitivity of the spectral density J���. Section
III A discusses this phenomenon. The limit mM →	 �or
mM+1→	�, motivated by the conclusions drawn in Ref. 8,
will be discussed in Sec. III B.

A. Location-dependent quantum tunneling

As we will see in Sec. III B the form of the nonlocal
action Eq. �3c� does not depend qualitatively on the masses
mn even if one of the defect masses mM or mM+1 becomes
infinitely large. Therefore we will choose for convenience
mn�m. Let us start with the situation where the bond defect
is located within the bulk, i.e., M =O�N�, so that

O � lim
N→	

M→	

M

N
= � � 1. �24�

One can prove that the tunneling phenomena do not depend
on � if it is different from zero and one. Therefore we choose
M =N /2 and without loss of generality N to be even. This
choice and the assumption mn�m allow us to determine the
eigenfrequencies �
 and the eigenvectors e�
� ,
=1, . . . ,N
−2 exactly for finite N. A calculation, whose technical details
are presented in Appendix A, results in

�


 =

4

m
sin2�q





2

 → �
 = �0 sin�q2

2

, �0 = 2�C

m
,

�25a�

� �
� �

� �
� �

� �
� �

� �
� �

1 M M+1

( ΙΙ )
a al

( Ι )
aa s

M+1 NM1

N

FIG. 1. Two degenerate classical ground states of the open chain
with N particles. The masses mn, n�M ,M +1 are chosen to be
equal. a is the equilibrium length of the harmonic bonds and as ,al

are the two degenerate equilibrium lengths of the anharmonic bond.
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ej
+�
� =� 2

N − 1

��sin�q

+ j� , 1 � j � M − 1 =

N

2
− 1

sin�q

+�j − 1�� , M + 1 =

N

2
+ 1 � j � N − 1� ,

ej
−�
� =� 2

N
sin�q


− j�, 1 � j � N − 1; j � M =
N

2
,

�25b�

where

q

��� = �

�

N − 1
�2
 − 1� , � = +

�

N
2
 , � = − � , �25c�

for 
=1, . . . ,N /2−1. It is easy to see that ej
+�
� are the sym-

metric eigenvalues with respect to j→N− j and ej
−�
� are the

antisymmetric ones. From this, mn�m, and Eq. �20�, it is
obvious that the bond defect does not couple to the antisym-
metric vibrational modes, as may be expected from the sym-
metry of the problem. With these results we can calculate the
spectral density. Making use of Eqs. �20�, �23a�, and �25�, we
get from Eq. �5c� in the thermodynamic limit N→	 that

J��� =
1

2
C�0�

0

�

dq cos2�q

2

sin�q

2

��� − �0 sin�q

2

�

= C�1 − � �

�0

2 �

�0
. �26a�

In the limit ���0 we obviously have

J��� � C
�

�0
, �26b�

which corresponds to the situation of Ohmic damping. The
Ohmic damping results from two facts: first, the density of
states g��� of the vibrational modes in a one-dimensional
lattice is constant for ���0, and second the squared cou-
pling constant involves the factor sin2�q
M� which, for N
→	, M→	 with M /N=���0,1�, oscillates faster and faster
so that it can be replaced by 1/2. It is emphasized that the
condition M =O�1�, i.e., �=0 or 1, will change the shape of
J��� qualitatively.

Now we can calculate the kernel K���. For �0T�1 and
��0� T

2 − ������1, the fraction in Eq. �5b� can be well approxi-
mated by exp�−�0���sinq

2 �. The influence of the oscillators on
tunneling of qM is determined by the large −� behavior, i.e.,
by the low-frequency modes. Therefore, substituting J���
from Eq. �26b� into Eq. �5b�, we find, of course, the well-
known result for Ohmic damping1–3

K��� �
1

�
C�0

1

��0��2 , �0� � 1. �27�

As a consequence, there exists a critical elastic constant
Ccrit so that the anharmonic bond can tunnel for C�Ccrit,
despite macroscopic masses have to be moved �see Fig. 1�.
For C�Ccrit symmetry is broken. If the anharmonic bond is
prepared in its ground state, e.g., qm

− =as, it will remain there
on average.

If, however, the bond defect is located close to one of the
boundaries so that either M =O�1� or N−M =O�1� ��=0 or 1
in Eq. �24��, the situation changes. Note that we perform first
the thermodynamic limit N→	. Then M =O�1� means that
M may equal to 1 ,2 , . . . ,106 or even a larger but still finite
number. For mn�m one can easily show that

c
 =
1

2
C�eM−1

�
� + eM+1
�
� � = CN
 sin�q
M� , �28�

where N
 is the normalization constant of �en
�
�� �see Appen-

dix A�. Replacing N
 by its low-frequency behavior �2 /N�1/2

and taking the limits �0T�1 and ��0� T
2 − ������1 yields

KM��� �
1

2
C�0

1

�
�

0

�

dqq sin2�qM�e−�1/2��0���q �29�

for the kernel. In order to be consistent we also replaced
��q�=�0 sin�q /2� by its low-frequency dispersion ��q�
� 1

2�0q. The integrand of Eq. �29� involves two q scales

qM =
1

M
and q� =

1

�0���
. �30�

Equating qM =q� defines the time scale

�M = �o
−1M . �31�

The physical meaning of �M is as follows: the path-integral
formalism7,13 allows one to investigate quantum tunneling by
determining the instanton solutions, i.e., the solutions of the
classical equation of motion for a double-well potential in
imaginary time. The width �kink of a single instanton is

�kink = � m

V0��qM

�


1/2
.

If we assume that V0��qM

��C, the elastic constant of the

harmonic bonds, then �kink��0
−1 so that

�M � M�kink. �32�

The � dependence of KM��� is sensitive to whether ��� /�kink
�M or vice versa. Let us start with the long-time limit, �i�
��� /�M �1.

Then it follows from Eqs. �30� and �31� that q��qM. The
major contribution to the integral in Eq. �29� comes from q
�q��qM. Therefore, we are allowed to replace sin2�qM�
=sin2�q /qM� by �q /qM�2= �qM�2, which leads to the spectral
density J�����3 at low frequencies corresponding to super-
Ohmic damping. It implies that KM�����−4. The precise re-
sult is
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KM��� �
48

�
C�0

1

��0��4 M2, ��� � �M . �33�

�ii� A different situation takes place for ��� /�M �1. Then
q��qM and the integral in Eq. �29� must be decomposed in
two contributions �0

qMdq¯+�qM

� dq¯. The first integral
yields a constant in the leading order in �0� /�M =�0� /M.
For the second one we are allowed to replace sin2�qM�
=sin2�q /qM� by 1/2 since the main contribution comes from
q�q��qM so that the function sin2�qM�=sin2�q /qM� is os-
cillating fast between zero and one, whereas exp�− 1

2�0���q�
=exp�− 1

2q /q�� varies slowly. Accordingly ���M corre-
sponds to an “effective” spectral density J�����, i.e., to
Ohmic damping. It is straightforward to estimate both inte-
grals. As the final result we obtain

KM��� �
1

�
C�0� 1

8M2�1 + O��0���
M


� +
1

��0��2	
�34�

for �kink����M �M�kink. Taking the limit M→	 in Eq.
�34� restores the result �27� for the kernel K���.

For M =O�1� or N−M =O�1�, and N→	 we obtain for
KM��� a crossover at �M from the power law �−2 for ���M to
�−4 for ���M. Figure 2 illustrates this behavior for KM���,
calculated numerically. On the log-log plot of Fig. 2, the
crossover between both power laws can easily be observed.

This crossover is related to the M dependence of the spec-
tral density because the defect-phonon coupling constants c


are M dependent. If the “observation time” T �which is the
time T in GE from Eq. �2�� is smaller than �M then ��−���
will be smaller than �M, as well. Consequently the kernel
KM��−��� entering the nonlocal action �Eq. �3c�� decays as
1 / ��−���2. If, however, T is larger than �M then it is possible
that ��−��� becomes larger than �M, as well. For those values
of ��−��� the kernel KM decays as 1 / ��−���4. This discus-
sion reveals that the choice of the observation time T allows
fixing of the “large”-� behavior of KM���, where, of course,
��T. If M is far away from the chain end, the crossover
time �M is correspondingly large. Increasing M even more

causes �M to increase, as well. Nevertheless, the observation
time dependence still exists. It disappears for M→	 only.
We remind the reader that the limit N→	 has to be taken
first.

Now making use of the analogy1,3,4 between the calcula-
tion of the action of a multi-instanton configuration interact-
ing via KM��−��� and a one-dimensional Ising model with
the coupling constants Jnm�KM�n−m���n−m�−k, we can
conclude the following: if the observation time T is smaller
than �M then we have KM�����−2, i.e., Ohmic damping. In
that case the bond defect may tunnel for C�Ccrit�T�,
whereas symmetry becomes broken for C�Ccrit�T�. Note
that this is not a sharp transition at Ccrit�T� since finite T
corresponds to a finite Ising chain which does not exhibit a
sharp phase transition. What really happens when increasing
the coupling constant C is an increase in the correlation
“length” ��C�. As soon as ��C� equals the “size” T of the
Ising chain, a “long-range” order occurs. However, if T is
much larger than �M �M�kink, we have KM�����−4 and tun-
neling is never suppressed.1,3

One might be puzzled by these conclusions since the tran-
sition for Ohmic damping to decoherence for M =O�N�, N
→	 occurs for large T, or to be more precise it becomes a
sharp transition for T=	 only. As we already stressed above,
the transition for T��M is not sharp. The relevant phonons
contributing to KM��� have wave numbers q�q��qT= 1

T .
This makes the effective spectral density Ohmic. Mapping
the situation for M =O�1� again onto the Ising chain of
length L results in the coupling constants Jnm decaying like
J0�n−m�−2 for �n−m��M and like J0�n−m�−4 for �n−m�
�M. It is clear that there is no sharp phase transition for
finite L. But if L�M, the coupling constants decay as J0�n
−m�−2. For a fixed temperature T �not to be confused with the
observation time T� there will be no magnetic order �=̂ co-
herent tunneling� for J0�J0,crit�T��=̂C�Ccrit�T��. For J0
�J0,crit�T��=̂C�Ccrit�T�� a crossover to the long-range order
�=̂ decoherent tunneling� takes place. Accordingly the quan-
tum tunneling phenomenon is richer for M =O�1� than for
M =O�N�.

Actually we may think also in the real time t terms that as
long as only the phonons with relatively high frequencies

1 10 100 1000 10000 1e+05
Log τ

1e-20

1e-16

1e-12

1e-08

0.0001

1

L
og

K
M

(τ
)

FIG. 2. �Color online� � dependence of KM���
for M =5, 10, 40, and 160 �from bottom to top�
on a log-log representation. The dotted and
dashed lines corresponds to �−2 and �−4, respec-
tively. The crossover at ���M from the �−2 be-
havior to that of �−4 can clearly be seen. The
parameters have been chosen as follows: T=105,
C=m=1⇒�0=2.
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��1 / t and hence short wavelength such that 1 /q�M par-
ticipate in the interaction with the anharmonic defect, the
latter does not “feel” that the chain is finite and behaves as in
the Ohmic case. In the course of time the lower frequency
phonons with higher wavelength “reach” the end of the chain
and a crossover to a super-Ohmic behavior takes place.

B. Dependence on the masses of defect

In this subsection we will assume that

mn = �m , n � M,M + 1,

M1, n = M ,

M2, n = M + 1.
� �35�

For M =O�N� we may choose without loss of generality M
=N /2 with N being even. It is easy to prove that ej

+�
�, from
Eq. �25b�, remain eigenvectors of T with q


+, 

=1,2 , . . . ,N /2−1 given by Eq. �25c�. The remaining �N /2
−1� eigenvectors are of the form

ej
−�
� = N


−�sin�q

− j� , 1 � j �

N

2
− 1,

sin�q

−�N − j�� ,

N

2
+ 1 � j � N − 1.�

�36a�

q

− is a solution of transcendental equation. Let us introduce

the quantities �i=m /Mi, i=1,2, and �=�1�2 / ��1+�2�. The
limit M1→	 �or M2→	� implies �→0. Since the results in
Ref. 8 motivate us to study, e.g., M2→	, we find

q

− = q


+ +
1

N − 1

2�

tan�q�
+

2

 + O��2� �36b�

in the limit �→0. Substituting Eq. �36� into Eq. �20� yields

c

− � c


+ ,

in the leading order in �. As a result J��� and therefore K���,
as well, are doubled as compared to the case of Mi=m, i.e.,
we get

K��� �
2

�
C�0

1

��0��2 �37�

for M2→	.
The only essential result of changing M2 from m to infin-

ity is that the critical elastic constant increases by a factor
of 2.

IV. SUMMARY AND CONCLUSIONS

For a translationally invariant chain with one anharmonic
bond and otherwise harmonic nearest-neighbor interactions,
we have shown exactly how the anharmonic degree of free-
dom can be separated from the harmonic ones in their
normal-mode representation. As a result, we have obtained
Lagrangian �21�, which is of the form of Lagrangian �4�.
Note, that this result can also be obtained for a three-

dimensional system within the Born-Oppenheimer approxi-
mation starting with an arbitrary translationally invariant po-
tential V�x�1 , . . . ,x�N� for a N-particle system.12 Since the
Caldeira-Leggett type nonlocal action1–3 is based on the form
�4� �or Eq. �21�� of the Lagrangian, it is not the translation
invariance and therefore not the conservation of momentum,
which can lead to a different type of nonlocal action. The
discrepancy between our results and those of Ref. 8 may
have the following origin. Since the harmonic part of La-
grangian �7� is diagonal in x
, the harmonic variables x
 are
already normal-mode coordinates. In that case a translation
of the full system only changes the Goldstone mode ampli-
tude �let us say x0� but leaves all the other normal-mode
coordinates unchanged, i.e., x
→x
, 
�0 for any transla-
tion. If x1 and x2 in Eq. �7� are real-space coordinates, then
the coupling term �x
−x2�2 is not translationally invariant for

�0.

Our model has allowed us to calculate explicitly, e.g., for
mn=m and M =N /2 the coupling constants c
, the eigenfre-
quencies �
, and the spectral density J���. The � depen-
dence of J is determined by the density of states g��� and the
coupling constants c
. Although g��� for �→0 is indepen-
dent of the number M, the frequency dependence of c
 ex-
hibits a sensitivity to the location M, which makes the effect
of the harmonic bath on quantum tunneling M sensitive. As a
consequence, the damping is Ohmic if the bond defect is
within the bulk of the chain and super-Ohmic if it is close to
the boundaries. For the former case there is a transition from
a delocalized state �due to tunneling� to a localized one if the
elastic constant exceeds a critical value Ccrit, whereas tunnel-
ing is never suppressed in the latter case, provided the obser-
vation time T is large enough compared to �M which is
roughly M times the instanton kink width. For T��M �since
the thermodynamic limit N→	 had already been performed,
M must be finite but can be arbitrarily large� the dissipation
is effectively Ohmic leading to a similar behavior when the
bond defect is within the bulk.

If M =O�N� �e.g., M =N /2� and if one of the masses of
the bond defect tends to infinity, no significant changes occur
except for doubling of the critical constant Ccrit. This is ob-
vious since, e.g., M2→	 makes the part of the chain to the
right of the defect inactive, i.e., the phonons to the right do
not act as a reservoir for the bond defect. Accordingly, only
half of the harmonic chain is generating dissipation, which
results in doubling of Ccrit.

Although we are not aware of a concrete experimental
system, these results could be relevant for linear macromol-
ecules, which may be described by the model Hamiltonian
Eq. �10�. If many such molecules with a single defect are
produced, the position of which can be controlled experi-
mentally, one might observe, e.g., the location-dependent
tunneling by spectroscopic methods.
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APPENDIX A: USE OF COM AND RELATIVE
COORDINATES OF THE TOTAL CHAIN:

DIAGONALIZATION OF THE MATRIX T

The separation of the harmonic and anharmonic DOF by
using the center of mass and relative coordinates of the total

chain has been described in Sec. II. The transformation to
normal coordinates requires the diagonalization of the matrix
T. Here the most important steps of the diagonalization pro-
cedure are outlined.

Making use of Eqs. �12�–�15� one obtains the matrix ele-
ments of the symmetric matrix T in the form

Tii =�
mi + mi+1

mimi+1
, i = 1, . . . ,M − 2,M + 2, . . . ,N − 1,

mM−1 + �mM + mM+1�
mM−1�mM + mM+1�

, i = M − 1,

�mM + mM+1� + mM+2

�mM + mM+1�mM+2
, i = M + 1,

� �A1a�

Tii+1 = �−
1

mi+1
, i = 1, . . . ,M − 2,M + 1, . . . ,N − 2,

0, i = M − 1
� �A1b�

and

Tii+2 = �0, i = 1, . . . ,M − 3,M + 1, . . . ,N − 3,

−
1

mM + mM+1
, i = M − 1. �

�A1c�

The diagonalization of T cannot be done analytically for
arbitrary masses mi. Therefore we take the simplest case of
equal masses, mi�m. Then it is straightforward to prove that
the eigenvalue equation,



j=1

�j�M�

N−1

Tijej
�
� = �
ei

�
�,

is solved by

ei
�
� = N
�sin�q
i� , 1 � i � M − 1

b
 sin�q
�N − i�� , M + 1 � i � N − 1
	 ,

�A2�

�
 =
2

m
�1 − cos�q
�� , �A3�

where N
 is the normalization constant and b
 is a coeffi-
cient depending on the location M of the bond defect. The
wave numbers q
 are solutions of the transcendental equa-
tion,

cot�qN� = cot�qM� +

cot�q

2



2 sin2�qM�
. �A4�

Since the left-hand side of Eq. �A4� diverges at q= �
N ·
, 


=0,1 , . . . it is easy to see that its solutions are of the form

q
 =
�

N

 + �
, 
 = 0,1, . . . ,N − 3, �A5�

with 0��
�
�
N . There are �N−2� solutions corresponding to

the �N−2� harmonic DOF. The remaining two DOF are the
COM and the bond defect coordinate Xc and qM, respec-
tively. In the thermodynamic limit N→	, the discrete set of
q
 wave vectors becomes a continuous variable q within
�0,�� with a constant density which together with Eq. �A3�
implies a constant low energy density of states.

The normalization constant N
 and the coefficient b
 are
functions of q
 , M, and N. Their explicit expressions are not
given here.

APPENDIX B: USE OF COM AND RELATIVE
COORDINATES OF THE BOND DEFECT

In this appendix we will describe the separation of har-
monic and anharmonic DOF using an approach alternative to
that used in Sec. II. It has the advantage that it can be
straightforwardly applied to higher dimensional systems. The
starting point is the introduction of COM and relative coor-
dinate Xd and qM, respectively, of the bond defect �see Eq.
�11��. The corresponding canonical momenta,

Pd = pM + pM+1, �B1a�
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�M =
mM

mM + mM+1
pM+1 −

mM+1

mM + mM+1
pM . �B1b�

Substituting Xd ,qM from Eq. �11� and Pd ,�M from Eq. �B1�
into Eq. �10� yields

H = Hd + Hharm + Hint, �B2a�

where

Hd =
1

2�M
�M

2 + V0�qM� +
C

2

mM
2 + mM+1

2

�mM + mM+1�2qM
2 , �B2b�

Hharm = 

n=1

�n�M,M+1�

N
1

2mn
pn

2 +
1

2�mM + mM+1�
Pd

2

+
C

2 

n=1

�n�M,M
1�

N−1

�xn+1 − xn − an�2

+
C

2
�Xd − xM−1 − aM−1�2 +

C

2
�xM+2 − Xd − aM+1�2,

�B2c�

Hint = − C� mM+1

mM + mM+1
�Xd − xM−1 − aM−1�

+
mM

mM + mM+1
�xM+2 − Xd − aM+1��qM . �B2d�

Here �M =mMmM+1 / �mM +mM+1� is the reduced mass of
bond defect. Note that Hd from Eq. �B2b� is identical to Hd
from Eq. �16b� after replacing ��M ,qM� by �p̃M , q̃M�. The
transformation of Hharm �Eq. �B2c�� to the normal coordi-
nates may be more conveniently carried out using the nota-
tions

xn� = �xn, n = 1, . . . ,M − 1

Xd, n = M

xn+1, n = M + 1, . . . ,N − 1
� , �B3a�

pn� = �pn, n = 1, . . . ,M − 1

Pd, n = M

pn+1, n = M + 1, . . . ,N − 1
� , �B3b�

and

mn� = �mn, n = 1, . . . ,M − 1

mM + mM+1, n = M

mn+1, n = M + 1, . . . ,N − 1
� . �B3c�

Next we expand the potential part Vharm�x1� , . . . ,xN−1� � of
Hharm around its equilibrium configuration,

xn� = xn�
�eq� + un�, �B4�

up to the second-order terms in un�. Note that this is not an
approximation since Vharm is a harmonic potential. This leads
to

Hharm = 

n=1

N−1
1

2mn�
pn�

2 +
C

2 

n=1

N−2

�un+1� − un��
2. �B5�

Introducing the mass-weighted coordinates

ũn� = �mn�un�, �B6a�

p̃n� =
1

�mn�
pn�. �B6b�

Equation �B5� yields

Hharm =
1

2 

n=1

N−1

p̃n�
2 +

1

2 

n,m=1

N−1

Ṽnm� ũn�ũm� , �B7a�

where the only nonzero matrix elements of the symmetric

matrix Ṽ� are

Ṽnn� =
C

mn�
�1, n = 1,N − 1

2, n = 2, . . . ,N − 2
	 , �B7b�

and

Ṽnn+1� = −
C

�mn�mn+1�
. �B7c�

Let ẽn
�
� and �̃
 ,
=0,1 , . . . ,N−2 be, respectively, the eigen-

vectors and eigenvalues of Ṽ�. The canonical transformation,

x̃
 = 

n=1

N−1

ũn�ẽn
�
�, p̃
 = 


n=1

N−1

p̃n�ẽn
�
�, �B8�

leads to the normal-mode representation

Hharm =
1

2 


=0

N−2

�p̃

2 + �̃
x̃


2� . �B9�

Since Hharm in Eq. �B5� is still translation invariant, there is a
zero-frequency mode which we choose for 
=0. With �0
=0 we get

Hharm =
1

2
p̃0

2 +
1

2 


=1

N−2

�p̃

2 + �̃
x̃


2� . �B10�

The first term in the right-hand side of Eq. �B10� is the
kinetic energy of the COM of total chain. The second term
corresponds to Hharm from Eq. �19a�. Using Eqs. �B3�, �B4�,
�B6�, and �B8� brings the interaction part �Eq. �B2d�� into the
form

Hint = − 




c̃
x̃
qM �B11�

with

c̃
 = C
1

mM + mM+1
�mM+1� 1

�mM�
ẽM

�
� −
1

�mM−1�
ẽM−1

�
� 

+ mM� 1

�mM+1�
ẽM+1

�
� −
1

�mM�
ẽM

�
�
� . �B12�

Again, the analytical diagonalization of Ṽ� cannot be per-
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formed for arbitrary masses. Accordingly, we choose mn
�m as in Appendix A. Then Eqs. �B7b� and �B7c� result in

mn� = m�1, n � M ,

2, n = M ,
	 �B13�

Ṽnn� =
C

m
�1, n = 1,M,N − 1,

2, n � 1,M,N − 1,
	 �B14a�

Ṽnn+1� = −
C

m
�1, n � M − 1,M

1/�2, n = M − 1,M
	 . �B14b�

All the other matrix elements vanish. Again it is straightfor-

ward to prove that the eigenvalue equation 
m=1
N−1Ṽnm� ẽm

�
�

= �̃
ẽn
�
� for n�M −1,M ,M +1 is solved by

ẽn
�
�

= Ñ
�cos�q̃
�n −
1

2

� , n = 1, . . . ,M − 2,

b̃
 cos�q̃
�N − n −
1

2

� , n = M + 2, . . . ,N − 1,�

�B15�

�̃
 =
2C

m
�1 − cos�q̃
�� , �B16�

with Ñ
 being the normalization constant and b̃
 a
M-dependent coefficient. The remaining equations for ẽn

�
�

with n=M −1,M and M +1 yield a nontrivial solution if a
corresponding determinant vanishes. This condition leads to
the transcendental equation,

2�− 1 + 2 cos�q�� =

cos�q�M −
3

2

�

cos�q�M −
1

2

�

+

cos�q�N − M −
3

2

�

cos�q�N − M −
1

2

�

, �B17�

for the wave numbers q̃
. Although Eq. �B17� looks quite
different from the transcendental Eq. �A4�, it can be shown
by use of identities for trigonometric functions that Eqs.
�B17� and �A4� are equivalent, i.e., the set of solutions �q̃
�
of Eq. �B17� and �q
� of Eq. �A4� are identical. We have
already stressed that Hd from Eq. �B2b� and that from Eq.
�16b� are identical, as well. Straightforward but tedious cal-
culations show that the complete Lagrangian corresponding
to the classical Hamiltonian Eq. �B2� is identical to the La-
grangian �21�. Particularly, it can be proven that c̃
 from Eq.
�B12� is identical to c
 from Eq. �20�.

APPENDIX C: SEPARATING THE HARMONIC PART
INTO LEFT AND RIGHT PARTS

In this appendix we will show that separation of the har-
monic and anharmonic DOF can be done by taking the left
and right harmonic parts separately. Similarly to the ap-
proach used in Sec. II, our first step is to separate the COM
of the total chain from the relative coordinates. This leads to
the Hamiltonian from Eq. �14�. Neglecting the kinetic energy
of COM Eq. �14� can be rewritten as

H = Hd + Hharm
L + Hharm

R + Hint, �C1a�

where

Hd =
1

2�M
�M

2 + V0�qM� , �C1b�

Hharm
L =

1

2 

i,j=1

M−1

Tij
L�i� j +

C

2 

i=1

M−1

qi
2, �C1c�

Hharm
R =

1

2 

i,j=M+1

N−1

Tij
R�i� j +

C

2 

i=M+1

N−1

qi
2, �C1d�

Hint = − � 1

mM
�M−1 +

1

mM+1
�M+1
�M , �C1e�

and the nonzero matrix elements are

Tii
��� =

mi + mi+1

mimi+1
, Tii+1

��� = −
1

mi+1
= Ti+1,i

��� , � = L,R ,

�C1f�

with i=1, . . . ,M −1 for �=L and i=M +1, . . . ,N−1 for �
=R. Let ei

L����ei
R���� and ��

L���
R� be the eigenvectors and ei-

genvalues of TL�TR�.
Then we use the notations

x�
L = 


i=1

M−1

qiei
L���, x�

R = 

i=M+1

N−1

qiei
R���, �C2a�

p�
L = 


i=1

M−1

�iei
L���, p�

R = 

i=M+1

N−1

�iei
R���, �C2b�

in order to get

Hharm
L =

1

2 

�=1

M−1

���
L�p�

L�2 + C�x�
L�2� , �C3a�

and

Hharm
R =

1

2 

�=M+1

N−1

���
R�p�

R�2 + C�x�
R�2� �C3b�

for the harmonic part, and

Hint = − �

�=1

M−1

c�
Lp�

L + 

�=M+1

N−1

c�
Rp�

R
�M �C4a�

for the interaction with
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c�
L =

1

mM
eM−1

L��� , c�
R =

1

mM+1
eM+1

R��� �C4b�

for the coupling constants.
This type of approach describes the chain as a bond defect

coupled to two baths of harmonic oscillators, the left and
right part of the chain. For the path-integral formalism we
need the Lagrangian. From Eqs. �C1a�, �C1b�, and �C4a� we
can determine the velocities q̇M , ẋ�

L and ẋ�
R as function of the

momenta. Solving for the momenta as a function of the ve-
locities is straightforward but tedious. We report the final
result

�M = ��q̇M + 

�=1

M−1
c�

L

��
L ẋ�

L + 

�=1

N−M−1
c�

R

��
R ẋ�

R� , �C5a�

p�
L =

1

��
L ẋ�

L + �
c�

L

��
L� 


��=1

M−1 c��
L

���
L ẋ��

L + 

��=1

N−M−1 c��
R

���
R ẋ��

R + q̇M� ,

�C5b�

p�
R =

1

��
R ẋ�

R + �
c�

R

��
R� 


��=1

M−1 c��
L

���
L ẋ��

L + 

��=1

N−M−1 c��
R

���
R ẋ��

R + q̇M� ,

�C5c�

with

� = �M�1 − �M�

�=1

M−1
�c�

L�2

��
L + 


�=1

N−M−1
�c�

R�2

��
R 
�−1

. �C6�

Making use of Eq. �C5� for the calculation of the Legendre
transform of H from Eq. �C1� leads to the Euclidean La-
grangian

L = Ld + Lharm + Lint, �C7a�

where

Ld =
�

2
q̇M

2 + V0�qM� , �C7b�

Lharm =
1

2 

�=1

M−1 � 1

��
L �ẋ�

L�2 + C�x�
L�2�

+
1

2 

�=1

N−M−1 � 1

��
R �ẋ�

R�2 + C�x�
R�2�

+
�

2�

�=1

M−1
c�

L

��
L ẋ�

L + 

�=1

N−M−1
c�

R

��
R ẋ�

R�2

, �C7c�

Lint = − �q̇M�

�=1

M−1
c�

L

��
L ẋ�

L + 

�=1

N−M−1
c�

R

��
R ẋ�

R� . �C7d�

This form of L differs completely from that of Eq. �21�.
Particularly, Lint from Eq. �C7d� is a coupling of the veloci-
ties and not of the bond defect coordinate qM with the
normal-mode coordinates x
, as for Lint from Eqs. �21a� and
�21c�. In addition, the harmonic part Eq. �C7c� is not “diag-
onal,” i.e., due to the third term on the right-hand side. of Eq.
�C7c� there is an intracoupling and an intercoupling between
the phonons �normal modes� of the left and right harmonic
parts of the chain.

In order to eliminate the harmonic degrees of freedom in
the path-integral representation of the propagator, one has to
“diagonalize” Lharm from Eq. �C7c�. This can be done by a
point transformation x�

L��x
� ,qM� and x�
R��x
� ,qM�. This

transformation follows directly from Eqs. �15b�, �18�, and
�C2�:

x�
L��x
�,qM� = 



=1

N−2 �

i=1

M−1

ei
�
�ei

L���
x
 −
mM+1

mM + mM+1
eM−1

L��� qM ,

�C8a�

x�
R��x
�,qM� = 



=1

N−2 � 

i=M+1

N−1

ei
�
�ei

R���
x
 −
mM

mM + mM+1
eM+1

R���qM .

�C8b�

Taking the time derivative of Eq. �C8� yields the transforma-
tion of the velocities. Substituting this and the transformation
�C8� into Eq. �C7� diagonalizes Lharm and replaces the veloc-
ity coupling by a coupling of qM and �x
�. After a lengthy
calculation, one arrives at the Lagrangian from Eq. �21�,
which, of course, is not a surprise.
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